翻訳と辞書
Words near each other
・ FourFourTwo
・ FourFourTwo (TV series)
・ Fourg
・ Fourges
・ Fourgo
・ Fourhorn poacher
・ Fourhorn sculpin
・ Fourie
・ Fourie du Preez
・ Fourier
・ Fourier (crater)
・ Fourier algebra
・ Fourier amplitude sensitivity testing
・ Fourier analysis
・ Fourier complex
Fourier coordinates
・ Fourier division
・ Fourier domain mode locking
・ Fourier integral operator
・ Fourier inversion theorem
・ Fourier Island
・ Fourier number
・ Fourier operator
・ Fourier optics
・ Fourier profilometry
・ Fourier ptychography
・ Fourier series
・ Fourier shell correlation
・ Fourier sine and cosine series
・ Fourier transform


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fourier coordinates : ウィキペディア英語版
Fourier coordinates

If the given directed graph with boundary is rotation invariant then its hitting matrix is diagonal in Fourier coordinates. Let
:\omega = e^
be the ''Nth root of unity or any other root of unity not equal to 1.
:\omega^N = 1,\quad \omega \ne 1.
We consider the following symmetric Vandermonde matrix:
:\mathbf_N =
\begin
1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^2 & \ldots & \omega^ \\
1 & \omega^2 & \vdots & \ldots & \omega^ \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^ & \omega^ & \ldots & \omega^ \\
\end

For example,
:\mathbf_5 =
\begin
1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^2 & \omega^3 & \omega^4 \\
1 & \omega^2 & \omega^4 & \omega^6 & \omega^8 \\
1 & \omega^3 & \omega^6 & \omega^9 & \omega^ \\
1 & \omega^4 & \omega^8 & \omega^ & \omega^ \\
\end
=
\begin
1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^2 & \omega^3 & \omega^4 \\
1 & \omega^2 & \omega^4 & \omega & \omega^3 \\
1 & \omega^3 & \omega & \omega^4 & \omega^2 \\
1 & \omega^4 & \omega^3 & \omega^2 & \omega \\
\end.

The square of the Fourier transform is the flip permutation matrix:
:\mathbf^2 = \mathbf.
The fourth power of the Fourier transform is the identity:
:\mathbf^4 = \mathbf.
''Exercise'': Proof that for any :1 \le k \le N-1
:\mathbf = \mathbf\mathbf.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fourier coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.